Documentation

Probability.Risk.VaR

Equations
Instances For
    def Risk.FinVaR1 {n : } (P : Findist n) (X : FinRV n ) (α : RiskLevel) :

    Value-at-Risk of X at level α: VaR_α(X) = min { t ∈ X(Ω) | P[X ≤ t] ≥ α }. If we assume 0 ≤ α < 1, then the "else 0" branch is never used.

    Equations
    Instances For
      theorem Risk.var1_prob_lt_var_le_alpha {n : } {P : Findist n} {X : FinRV n } {α : RiskLevel} :
      theorem Risk.var1_prob_le_var_gt_alpha {n : } {P : Findist n} {X : FinRV n } {α : RiskLevel} :
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        def Risk.IsVaR {n : } (P : Findist n) (X : FinRV n ) (α : RiskLevel) (v : ) :

        Value v is the Value at Risk at α of X and probability P

        Equations
        Instances For
          def Risk.IsVaR2 {n : } (P : Findist n) (X : FinRV n ) (α : RiskLevel) (v : ) :

          A simpler, equivalent definition of Value at Risk

          Equations
          Instances For
            theorem Risk.var2_prob_cond {n : } {P : Findist n} {X : FinRV n } {α : RiskLevel} {v : } :
            IsVaR2 P X α v ℙ[X<ᵣv//P] α α < ℙ[X≤ᵣv//P]
            theorem Risk.finvar1_correct {n : } {P : Findist n} {X : FinRV n } {α : RiskLevel} :
            IsVaR2 P X α VaR[X//P, α]
            theorem Risk.var_is_quantile {n : } {P : Findist n} {X : FinRV n } {α : RiskLevel} {v : } :
            IsVaR P X α vStatistic.IsQuantile P X (↑α) v
            theorem Risk.var_is_quantilelower {n : } {P : Findist n} {X : FinRV n } {α : RiskLevel} {v : } :
            IsVaR P X α vStatistic.IsQuantileLower P X (↑α) v
            theorem Risk.var2_is_quantilelower {n : } {P : Findist n} {X : FinRV n } {α : RiskLevel} {v : } :
            IsVaR2 P X α vStatistic.IsQuantileLower P X (↑α) v
            theorem Risk.var2_is_quantile {n : } {P : Findist n} {X : FinRV n } {α : RiskLevel} {v : } :
            IsVaR2 P X α vStatistic.IsQuantile P X (↑α) v
            theorem Risk.quantile_nonempty {n : } {P : Findist n} {X : FinRV n } {α : RiskLevel} :
            theorem Risk.var_eq_var2 {n : } {P : Findist n} {X : FinRV n } {α : RiskLevel} {v : } :
            IsVaR P X α v IsVaR2 P X α v
            theorem Risk.var_prob_cond {n : } {P : Findist n} {X : FinRV n } {α : RiskLevel} {v : } :
            IsVaR P X α v ℙ[X<ᵣv//P] α α < ℙ[X≤ᵣv//P]
            theorem Risk.tail_monotone {n : } (X : Fin n.succ) (h : Monotone X) :
            def Risk.quantile_srt (n : ) (α : RiskLevel) (p x : Fin n.succ) (h1 : Monotone x) (h2 : ∀ (ω : Fin n.succ), 0 p ω) (h3 : α < 1 ⬝ᵥ p) (h4 : 0 < 1 ⬝ᵥ p) :

            compute a quantile for a (partial) sorted random variable and a partial probability used in the induction to eliminate points until we find one that has probability greater than α

            Equations
            Instances For
              theorem Risk.quant_less (n : ) {k : Fin n.succ} (α : RiskLevel) (p x : Fin n.succ) (h1 : Monotone x) (h2 : ∀ (ω : Fin n.succ), 0 p ω) (h3 : α < 1 ⬝ᵥ p) (h4 : 0 < 1 ⬝ᵥ p) (h5 : k = quantile_srt n α p x h1 h2 h3 h4) :
              iFinset.Ico 0 k, p i α iFinset.Icc 0 k, p i > α
              def Risk.FinVaR {n : } {P : Findist n} {X Y : FinRV n } (α : RiskLevel) :
              Findist nFinRV n
              Equations
              Instances For
                theorem Risk.var2_monotone {n : } {P : Findist n} {X Y : FinRV n } {v₁ v₂ : } {α : RiskLevel} :
                X YIsVaR2 P X α v₁IsVaR2 P Y α v₂v₁ v₂
                theorem Risk.const_monotone_univ {c : } :
                Monotone fun (x : ) => x + c
                theorem Risk.VaR2_translation_invariant {n : } {v : } {P : Findist n} {X : FinRV n } {c : } {α : RiskLevel} :
                IsVaR2 P X α vIsVaR2 P (X + c 1) α (v + c)
                theorem Risk.VaR_translation_invariant {n : } {P : Findist n} {X : FinRV n } {c : } {α : RiskLevel} :
                VaR[X + c 1//P, α] = VaR[X + c 1//P, α] + c
                theorem Risk.VaR_positive_homog {n : } {P : Findist n} {X : FinRV n } {c : } {α : RiskLevel} (hc : c > 0) :
                VaR[fun (ω : Fin n) => c * X ω//P, α] = c * VaR[X//P, α]