Equations
- Risk.RiskLevel = { α : ℚ // Risk.IsRiskLevel α }
Instances For
Value-at-Risk of X at level α: VaR_α(X) = min { t ∈ X(Ω) | P[X ≤ t] ≥ α }. If we assume 0 ≤ α < 1, then the "else 0" branch is never used.
Instances For
Equations
- One or more equations did not get rendered due to their size.
Instances For
Value v is the Value at Risk at α of X and probability P
Equations
- Risk.IsVaR P X α v = IsGreatest (Statistic.Quantile P X ↑α) v
Instances For
A simpler, equivalent definition of Value at Risk
Equations
- Risk.IsVaR2 P X α v = IsGreatest (Statistic.QuantileLower P X ↑α) v
Instances For
theorem
Risk.var_is_quantile
{n : ℕ}
{P : Findist n}
{X : FinRV n ℚ}
{α : RiskLevel}
{v : ℚ}
:
IsVaR P X α v → Statistic.IsQuantile P X (↑α) v
theorem
Risk.var_is_quantilelower
{n : ℕ}
{P : Findist n}
{X : FinRV n ℚ}
{α : RiskLevel}
{v : ℚ}
:
IsVaR P X α v → Statistic.IsQuantileLower P X (↑α) v
theorem
Risk.var2_is_quantilelower
{n : ℕ}
{P : Findist n}
{X : FinRV n ℚ}
{α : RiskLevel}
{v : ℚ}
:
IsVaR2 P X α v → Statistic.IsQuantileLower P X (↑α) v
theorem
Risk.var2_is_quantile
{n : ℕ}
{P : Findist n}
{X : FinRV n ℚ}
{α : RiskLevel}
{v : ℚ}
:
IsVaR2 P X α v → Statistic.IsQuantile P X (↑α) v
theorem
Risk.quantile_nonempty
{n : ℕ}
{P : Findist n}
{X : FinRV n ℚ}
{α : RiskLevel}
:
(Statistic.Quantile P X ↑α).Nonempty
theorem
Risk.isquantilelower_le_isquantile
{n : ℕ}
{P : Findist n}
{X : FinRV n ℚ}
{α : RiskLevel}
:
IsCofinalFor (Statistic.QuantileLower P X ↑α) (Statistic.Quantile P X ↑α)
theorem
Risk.isquantile_le_isquantilelower
{n : ℕ}
{P : Findist n}
{X : FinRV n ℚ}
{α : RiskLevel}
:
IsCofinalFor (Statistic.Quantile P X ↑α) (Statistic.QuantileLower P X ↑α)
def
Risk.quantile_srt
(n : ℕ)
(α : RiskLevel)
(p x : Fin n.succ → ℚ)
(h1 : Monotone x)
(h2 : ∀ (ω : Fin n.succ), 0 ≤ p ω)
(h3 : ↑α < 1 ⬝ᵥ p)
(h4 : 0 < 1 ⬝ᵥ p)
:
compute a quantile for a (partial) sorted random variable and a partial probability used in the induction to eliminate points until we find one that has probability greater than α
Equations
- One or more equations did not get rendered due to their size.
- Risk.quantile_srt Nat.zero α p_2 x_2 h1_2 h2_2 h3_2 h4_2 = 0
Instances For
Equations
- Risk.FinVaR α P_4 X_4 = 0
- Risk.FinVaR α P_4 X_4 = X_4 (Risk.quantile_srt n' α (P_4.p ∘ ⇑(Tuple.sort X_4)) (X_4 ∘ ⇑(Tuple.sort X_4)) ⋯ ⋯ ⋯ ⋯)