
Probability

UNH Elite Team

October 24, 2025

1 Probability Spaces and Expectation

In this section, we define the basic probability concepts on finite sets.

1.1 Definitions

Remark 1.1.1. This document omits basic intuitive definitions, such as the comparison or arithmetic opera-
tions on random variables. Arithmetic operations on random variables are performed element-wise for each
element of the sample set. Please see the Lean file for complete details.

Definition 1.1.2. A finite probability measure 𝑝 ∶ Ω → ℝ+ on a finite set Ω is any function that satisfies

∑
𝜔∈Ω

𝑝(𝜔) = 1.

Definition 1.1.3. The set of finite probability measures Δ(Ω) for a finite Ω is defined as

Δ(Ω) ∶= {𝑝∶ Ω → ℝ+ ∣ ∑
𝜔∈Ω

𝑝(𝜔) = 1} .

Definition 1.1.4. A finite probability space is 𝑃 = (Ω, 𝑝), where Ω is a finite set referred to as the sample
set, 𝑝 ∈ Δ(Ω), and the 𝜎-algebra is 2Ω.

Definition 1.1.5. A random variable defined on a finite probability space 𝑃 is a mapping ̃𝑥 ∶ Ω → ℝ.

For the remainder of Section 1, we assume that 𝑃 = (Ω, 𝑝) is a finite probability space. All random variables
are defined on the space 𝑃 unless specified otherwise.

Definition 1.1.6. A boolean set is ℬ = {false, true}.

Definition 1.1.7. The expectation of a random variable ̃𝑥 ∶ Ω → ℝ is

𝔼 [̃𝑥] ∶= ∑
𝜔∈Ω

𝑝(𝜔) ⋅ ̃𝑥(𝜔).

Definition 1.1.8. An indicator function 𝕀 ∶ ℬ → {0, 1} is defined for 𝑏 ∈ ℬ as

𝕀(𝑏) ∶= {1 if 𝑏 = true,
0 if 𝑏 = false .

1

Definition 1.1.9. The probability of ̃𝑏 ∶ Ω → ℬ is defined as

ℙ [̃𝑏] ∶= 𝔼 [𝕀(̃𝑏)] .

Definition 1.1.10. The conditional expectation of ̃𝑥 ∶ Ω → ℝ conditioned on ̃𝑏 ∶ Ω → ℬ is defined as

𝔼 [̃𝑥 ∣ ̃𝑏] ∶= 1
ℙ[̃𝑏]

𝔼 [̃𝑥 ⋅ 𝕀 ∘ ̃𝑏] ,

where we define that 𝑥/0 = 0 for each 𝑥 ∈ ℝ.

Definition 1.1.11. The conditional probability of ̃𝑏 ∶ Ω → ℬ on ̃𝑐 ∶ Ω → ℬ is defined as

ℙ [̃𝑏 ∣ ̃𝑐] ∶= 𝔼 [𝕀(̃𝑏) ∣ ̃𝑐] .

Remark 1.1.12. It is common to prohibit conditioning on a zero probability event both for expectation
and probabilities. In this document, we follow the Lean convention, where the division by 0 is 0; see
div_zero. However, even some basic probability and expectation results may require that we assume that
the conditioned event does not have probability zero for it to hold.

Definition 1.1.13. The random conditional expectation of a random variable ̃𝑥 ∶ Ω → ℝ conditioned on
̃𝑦 ∶ Ω → 𝒴 for a finite set 𝒴 is the random variable 𝔼 [̃𝑥 ∣ ̃𝑦] ∶ Ω → ℝ is defined as

𝔼 [̃𝑥 ∣ ̃𝑦] (𝜔) ∶= 𝔼 [̃𝑥 ∣ ̃𝑦 = ̃𝑦(𝜔)] , ∀𝜔 ∈ Ω.

Remark 1.1.14. The Lean file defines expectations more broadly for a data type 𝜌 which is more general
than just ℝ. The main reason to generalize to both ℝ and ℝ+. However, in principle, the definitions could
be used to reason with expectations that go beyond real numbers and may include other algebras, such as
vectors or matrices.

1.2 Basic Properties

Lemma 1.2.1. Suppose that ̃𝑏, ̃𝑐 ∶ Ω → ℬ. Then:

𝕀 (̃𝑏 ∧ ̃𝑐) = 𝕀(̃𝑏) ⋅ 𝕀(̃𝑐),

where the equality applies for all 𝜔 ∈ Ω.

Theorem 1.2.2. Suppose that ̃𝑐 ∶ Ω → ℬ such that ℙ [̃𝑐] = 0. Then for any ̃𝑥 ∶ Ω → ℝ:

𝔼 [̃𝑥 ∣ ̃𝑐] = 0.

Proof. Immediate from the definition and the fact that 0 ⋅ 𝑥 = 0 for 𝑥 ∈ ℝ.

Theorem 1.2.3. Suppose that ̃𝑐 ∶ Ω → ℬ such that ℙ [̃𝑐] = 0. Then for any ̃𝑏 ∶ Ω → ℝ:

ℙ [̃𝑏 ∣ ̃𝑐] = 0.

Proof. Immediate from Theorem 1.2.2.

Theorem 1.2.4. Suppose that ̃𝑏, ̃𝑐 ∶ Ω → ℬ, then

ℙ [̃𝑏 ∧ ̃𝑐] = ℙ [̃𝑏 ∣ ̃𝑐] ⋅ ℙ [̃𝑐] .

2

Proof. The property holds immediately when ℙ [̃𝑐] = 0. Assume that ℙ [̃𝑐] > 0. Then:

ℙ [̃𝑏 ∧ ̃𝑐] = 𝔼 [𝕀(̃𝑏 ∧ ̃𝑐)] [Definition 1.1.9]

= 𝔼 [𝕀(̃𝑏) ⋅ 𝕀(̃𝑐)] [Lemma 1.2.1]

= 1
ℙ [̃𝑐]𝔼 [𝕀(̃𝑏) ⋅ 𝕀(̃𝑐)] ⋅ ℙ [̃𝑐] ⋅ 1

= 𝔼 [𝕀(̃𝑏) ∣ ̃𝑐] ⋅ ℙ [̃𝑐] [Definition 1.1.10]

= ℙ [̃𝑏 ∣ ̃𝑐] ⋅ ℙ [̃𝑐] [Definition 1.1.11].

Lemma 1.2.5. Let ̃𝑦 ∶ Ω → 𝒴 with a finite 𝒴. Then

ℙ[̃𝑦 = 𝑦(𝜔)] ≥ 𝑝(𝜔), 𝜔 ∈ Ω.

Proof.

ℙ[̃𝑦 = 𝑦(𝜔)] = ∑
𝜔′∈Ω

𝑝(𝜔) ⋅ 𝕀(̃𝑦(𝜔′) = ̃𝑦(𝜔)) [Definition 1.1.9]

≥ 𝑝(𝜔) 𝜔 ∈ Ω[and]𝑝(𝜔′) ≥ 0, ∀𝜔′ ∈ Ω.

Remark 1.2.6. Theorem 1.2.12 shows the equivalence of expectations for surely equal random variables.

Theorem 1.2.7. Random variables ̃𝑥, ̃𝑦 ∶ Ω → ℝ satisfy that

𝔼 [̃𝑥 + ̃𝑦] = 𝔼 [̃𝑥] + 𝔼 [̃𝑦] .

Proof. From the distributive property of sums.

Theorem 1.2.8. A random variable ̃𝑥 ∶ Ω → ℝ and 𝑐 ∈ ℝ satisfies that

𝔼 [𝑐] = 𝑐.

Theorem 1.2.9. Suppose that ̃𝑥 ∶ Ω → ℝ and 𝑐 ∈ ℝ. Then

𝔼 [𝑐 + ̃𝑥] = 𝑐 + 𝔼 [̃𝑥] .

Proof. From Theorems 1.2.7 and 1.2.8.

Theorem 1.2.10. Suppose that ̃𝑥, ̃𝑦 ∶ Ω → ℝ and ̃𝑧 ∶ Ω → 𝒱 are random variables and 𝑐 ∈ ℝ, such that
̃𝑦(𝜔) = 𝑐 + ̃𝑥(𝜔). Then

𝔼 [̃𝑦 ∣ ̃𝑧] (𝜔) = 𝑐 + 𝔼 [̃𝑥 ∣ ̃𝑧] (𝜔), ∀𝜔 ∈ Ω.

Proof. From Theorem 1.2.9.

Theorem 1.2.11. Suppose that ̃𝑥, ̃𝑦 ∶ Ω → ℝ satisfy that

∀𝜔 ∈ Ω, 𝑝(𝜔) > 0 ⇒ ̃𝑥(𝜔) ≥ ̃𝑦(𝜔).

Then
𝔼 [̃𝑥] ≥ 𝔼 [̃𝑦] .

3

Theorem 1.2.12 (Congruence of Expectation). Suppose that ̃𝑥, ̃𝑧 ∶ Ω → ℝ satisfy that

∀𝜔 ∈ Ω, 𝑝(𝜔) > 0 ⇒ ̃𝑥(𝜔) = ̃𝑧(𝜔).

Then
𝔼 [̃𝑥] = 𝔼 [̃𝑧] .

Proof. Immediately from the congruence of sums.

1.3 The Laws of The Unconscious Statisticians

Theorem 1.3.1. Let ̃𝑥 ∶ Ω → ℝ be a random variable. Then:

𝔼 [̃𝑥] = ∑
𝑥∈𝑥̃(Ω)

ℙ [̃𝑥 = 𝑥] ⋅ 𝑥.

Proof. Let 𝒳 ∶= ̃𝑥(Ω), which is a finite set. Then:

𝔼 [̃𝑥] = ∑
𝜔∈Ω

𝑝(𝜔) ⋅ ̃𝑥(𝜔) [Definition 1.1.7]

= ∑
𝜔∈Ω

∑
𝑥∈𝒳

𝑝(𝜔) ⋅ ̃𝑥(𝜔) ⋅ 𝕀(𝑥 = ̃𝑥(𝜔)) [??]

= ∑
𝜔∈Ω

∑
𝑥∈𝒳

𝑝(𝜔) ⋅ 𝑥 ⋅ 𝕀(𝑥 = ̃𝑥(𝜔)) [??]

= ∑
𝑥∈𝒳

𝑥 ⋅ ∑
𝜔∈Ω

𝑝(𝜔) ⋅ 𝕀(𝑥 = ̃𝑥(𝜔)) [??]

= ∑
𝑥∈𝒳

𝑥 ⋅ 𝔼 [𝕀(𝑥 = ̃𝑥(𝜔))] [Definition 1.1.7]

= ∑
𝑥∈𝒳

𝑥 ⋅ ℙ [𝑥 = ̃𝑥(𝜔)] . [Definition 1.1.9]

The following theorem generalizes the theorem above.

Theorem 1.3.2. Let ̃𝑥 ∶ Ω → ℝ and ̃𝑏 ∶ Ω → 𝒴 be random variables. Then:

𝔼 [̃𝑥 ∣ ̃𝑏] = ∑
𝑥∈𝑥̃(Ω)

ℙ [̃𝑥 = 𝑥 ∣ ̃𝑏] ⋅ 𝑥.

Theorem 1.3.3. Let ̃𝑥 ∶ Ω → ℝ and ̃𝑦 ∶ Ω → 𝒴 be random variables with 𝒴 finite. Then:

𝔼 [𝔼 [̃𝑥 ∣ ̃𝑦]] = ∑
𝑦∈𝒴

𝔼 [̃𝑥 ∣ ̃𝑦 = 𝑦] ⋅ ℙ [̃𝑦 = 𝑦] .

1.4 Total Expectation and Probability

Theorem 1.4.1 (Law of Total Probability). Let ̃𝑏 ∶ Ω → ℬ and ̃𝑦 ∶ Ω → 𝒴 be random variables with a finite
set 𝒴. Then:

∑
𝑦∈𝒴

ℙ [̃𝑏 ∧ (̃𝑦 = 𝑦)] = ℙ [̃𝑏] .

4

Theorem 1.4.2 (Law of Total Expectation). Let ̃𝑥 ∶ Ω → 𝒳 and ̃𝑦 ∶ Ω → 𝒴 be random variables with a finite
set 𝒴. Then:

𝔼 [𝔼 [̃𝑥 ∣ ̃𝑦]] = 𝔼 [̃𝑥] .

Proof. Recall that we are allowing the division by 0 and assume that 𝑥/0 = 0.

𝔼 [𝔼 [̃𝑥 ∣ ̃𝑦]] = ∑
𝜔∈Ω

𝑝(𝜔) ⋅ 𝔼 [̃𝑥 ∣ ̃𝑦] (𝜔) [Definition 1.1.7]

= ∑
𝜔∈Ω

𝑝(𝜔) ⋅ 𝔼 [̃𝑥 ∣ ̃𝑦 = ̃𝑦(𝜔)] [Definition 1.1.13]

= ∑
𝜔∈Ω

𝑝(𝜔)
ℙ [̃𝑦 = ̃𝑦(𝜔)] ∑

𝜔′∈Ω
𝑝(𝜔′) ⋅ ̃𝑥(𝜔′) ⋅ 𝕀 (̃𝑦(𝜔′) = ̃𝑦(𝜔)) [Definition 1.1.10]

= ∑
𝜔′∈Ω

𝑝(𝜔′) ⋅ ̃𝑥(𝜔′) ⋅ ∑
𝜔∈Ω

𝑝(𝜔)
ℙ [̃𝑦 = ̃𝑦(𝜔)] 𝕀 (̃𝑦(𝜔′) = ̃𝑦(𝜔)) [rearrange]

= ∑
𝜔′∈Ω

𝑝(𝜔′) ⋅ ̃𝑥(𝜔′) ⋅ ∑
𝜔∈Ω

𝑝(𝜔)
ℙ [̃𝑦 = ̃𝑦(𝜔′)] 𝕀 (̃𝑦(𝜔′) = ̃𝑦(𝜔)) [equals when] ̃𝑦(𝜔′) = ̃𝑦(𝜔)

= ∑
𝜔′∈Ω

𝑝(𝜔′) ⋅ ̃𝑥(𝜔′) [see below]

= 𝔼 [̃𝑥] .

Above, we used the fact that

𝑝(𝜔′) ⋅ ∑
𝜔∈Ω

𝑝(𝜔)
ℙ [̃𝑦 = ̃𝑦(𝜔′)] 𝕀 (̃𝑦(𝜔′) = ̃𝑦(𝜔)) = 𝑝(𝜔′),

which follows by analyzing two cases. First, when 𝑝(𝜔′) = 0, then the equality holds immediately. If
𝑝(𝜔′) > 0 then by Lemma 1.2.5, ℙ [̃𝑦 = ̃𝑦(𝜔′)] > 0, we get from Definition 1.1.9 that

∑
𝜔∈Ω

𝑝(𝜔)
ℙ [̃𝑦 = ̃𝑦(𝜔′)] 𝕀 (̃𝑦(𝜔′) = ̃𝑦(𝜔)) = ℙ [̃𝑦 = ̃𝑦(𝜔′)]

ℙ [̃𝑦 = ̃𝑦(𝜔′)] = 1,

which completes the step.

2 Formal Decision Framework

2.1 Markov Decision Process

Definition 2.1.1. A Markov decision process 𝑀 ∶= (𝒮, 𝒜, 𝑃 , 𝑟) consists of a finite nonempty set of states 𝒮, a
finite nonempty set of actions 𝒜, transition function 𝑃 ∶ 𝒮×𝒜 → Δ(𝒮), and a reward function 𝑟 ∶ 𝒮×𝒜×𝒮 →
ℝ.

2.2 Histories

We implicitly assume in the remainder of the section an MDP 𝑀 = (𝒮, 𝒜, 𝑝, 𝑟).

5

Definition 2.2.1. A history ℎ in a set of histories ℋ is a sequence of states and actions defined for 𝑀
recursively as

ℎ ∶= ⟨𝑠⟩, [or] ℎ ∶= ⟨ℎ′, 𝑠, 𝑎⟩,
where 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜, and ℎ′ ∈ ℋ.

Definition 2.2.2. The length |ℎ| ∈ ℕ of a history ℎ ∈ ℋ is defined as

|⟨𝑠⟩| ∶= 0,
|⟨ℎ′, 𝑠, 𝑎⟩| ∶= 1 + |ℎ′|, ℎ′ ∈ ℋ.

Definition 2.2.3. The set ℋNE of non-empty histories is

ℋNE ∶= {ℎ ∈ ℋ ∣ |ℎ| ≥ 1} .

Definition 2.2.4. Following histories ℋ(ℎ, 𝑡) ⊆ ℋ for ℎ ∈ ℋ of length 𝑡 ∈ ℕ are defined recursively as

ℋ(ℎ, 𝑡) ∶= {{ℎ} if 𝑡 = 0,
{⟨ℎ′, 𝑎, 𝑠⟩ ∣ ℎ ∈ ℋ(ℎ′, 𝑡 − 1), 𝑎 ∈ 𝒜, 𝑠 ∈ 𝒮} otherwise.

Definition 2.2.5. The set of histories ℋ𝑡 of length 𝑡 ∈ ℕ is defined recursively as

ℋ𝑡 = {{⟨𝑠⟩ ∣ 𝑠 ∈ 𝒮} if 𝑡 = 0,
{⟨ℎ, 𝑎, 𝑠⟩ ∣ ℎ ∈ ℋ𝑡−1, 𝑎 ∈ 𝒜, 𝑠 ∈ 𝒮} 𝑡𝑒𝑥𝑡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Theorem 2.2.6. For ℎ ∈ ℋ:
|ℎ′| = |ℎ| + 𝑡, ∀ℎ′ ∈ ℋ(ℎ, 𝑡).

Proof. The theorem follows by induction on 𝑡 from the definition.

Definition 2.2.7. We use ̃𝑠𝑘 ∶ ℋ → 𝒮 to denote the 0-based 𝑘-th state of each history.

Definition 2.2.8. We use ̃𝑎𝑘 ∶ ℋ → 𝒜 to denote the 0-based 𝑘-th action of each history.

Definition 2.2.9. The history-reward random variable ̃𝑟h ∶ ℋ → ℝ for ℎ = ⟨ℎ′, 𝑎, 𝑠⟩ ∈ ℋ for ℎ′ ∈ ℋ,
𝑎 ∈ 𝒜, and 𝑠 ∈ 𝒮 is defined recursively as

̃𝑟h(ℎ) ∶= 𝑟(𝑠|ℎ|(ℎ′), 𝑎, 𝑠) + 𝑟h(ℎ′).

Definition 2.2.10. The history-reward random variable ̃𝑟h
𝑘 ∶ ℋ → ℝ for ℎ = ⟨ℎ′, 𝑎, 𝑠⟩ ∈ ℋ for ℎ′ ∈ ℋ,

𝑎 ∈ 𝒜, and 𝑠 ∈ 𝒮 is defined as the 𝑘-th reward (0-based) of a history.

Definition 2.2.11. The history-reward random variable ̃𝑟h
≤𝑘 ∶ ℋ → ℝ for ℎ = ⟨ℎ′, 𝑎, 𝑠⟩ ∈ ℋ for ℎ′ ∈ ℋ,

𝑎 ∈ 𝒜, and 𝑠 ∈ 𝒮 is defined as the sum of all 𝑘-th or earlier rewards (0-based) of a history.

Definition 2.2.12. The history-reward random variable ̃𝑟h
≥𝑘 ∶ ℋ → ℝ for ℎ = ⟨ℎ′, 𝑎, 𝑠⟩ ∈ ℋ for ℎ′ ∈ ℋ,

𝑎 ∈ 𝒜, and 𝑠 ∈ 𝒮 is defined as the sum of 𝑘-th or later reward (0-based) of a history.

2.3 Policies

Definition 2.3.1. The set of decision rules 𝒟 is defined as 𝒟 ∶= 𝒜𝒮. A single action 𝑎 ∈ 𝒜 can also be
interpreted as a decision rule 𝑑 ∶= 𝑠 ↦ 𝑎.

Definition 2.3.2. The set of history-dependent policies is ΠHR ∶= Δ(𝒜)ℋ.

6

Definition 2.3.3. The set of Markov deterministic policies ΠMD is ΠMD ∶= 𝒟ℕ. A Markov deterministic
policy 𝜋 ∈ ΠMD can also be interpreted as ̄𝜋 ∈ ΠHR:

̄𝜋(ℎ) ∶= 𝛿 [𝜋(|ℎ|, 𝑠|ℎ|(ℎ))] ,

where 𝛿 is the Dirac distribution, and 𝑠|ℎ| is the history’s last state.

Definition 2.3.4. The set of stationary deterministic policies ΠSD is defined as ΠSD ∶= 𝒟. A stationary
policy 𝜋 ∈ ΠSD can be interpreted as ̄𝜋 ∈ ΠHR:

̄𝜋(ℎ) ∶= 𝛿 [𝜋(𝑠|ℎ|(ℎ))] ,

where 𝛿 is the Dirac distribution and 𝑠|ℎ| is the history’s last state.

2.4 Distribution

Definition 2.4.1. The history probability distribution 𝑝h
𝑇 ∶ ΠHR → Δ(ℋ(ℎ, 𝑡)) and 𝜋 ∈ ΠHR is defined for

each 𝑇 ∈ ℕ and ℎ ∈ ℋ(ℎ̂, 𝑡) as

(𝑝h
𝑇 (𝜋))(ℎ) ∶= {𝕀(ℎ = ℎ̂) if 𝑇 = 0,

𝑝h
𝑇 −1(ℎ′, 𝜋) ⋅ 𝜋(ℎ′, 𝑎) ⋅ 𝑝(𝑠|ℎ|(ℎ′), 𝑎, 𝑠) if 𝑇 > 1 ∧ ℎ = ⟨ℎ′, 𝑎, 𝑠⟩.

Moreover, the function 𝑝h maps policies to correct probability distribution.

TODO: This definition needs to be updated. A probability space (Ωℎ,𝑡, 2Ωℎ,𝑡 , ̂𝑝ℎ,𝜋) which is defined as

Ωℎ,𝑡 ∶= {ℎ′ ∈ ℋ|ℎ|+𝑡 ∣ 𝑠𝑘(ℎ) = 𝑠𝑘(ℎ′) ∧ 𝑎𝑘(ℎ) = 𝑎𝑘(ℎ′), ∀𝑘 ≤ |ℎ|} , (1)

̂𝑝ℎ,𝜋 (⟨ℎ′, 𝑎, 𝑠⟩) ∶= {1 if ⟨ℎ′, 𝑎, 𝑠⟩ = ℎ,
̂𝑝ℎ,𝜋(ℎ′) ⋅ 𝜋(ℎ′, 𝑎) ⋅ 𝑝(𝑠|ℎ′|(ℎ′), 𝑎, 𝑠) otherwise, (2)

for each ⟨ℎ′, 𝑎, 𝑠⟩ ∈ Ωℎ,𝑡. The random variables are defined as ̃𝑠𝑘(ℎ′) ∶= 𝑠𝑘(ℎ′), ̃𝑎𝑘(ℎ′) ∶= 𝑎𝑘(ℎ′), ∀ℎ′ ∈ Ωℎ,𝑡.
We interpret the subscripts analogously on all operators, including other risk measures, and 𝔼, and ℙ.

Definition 2.4.2. The history-dependent expectation is defined for each 𝑡 ∈ ℕ, 𝜋 ∈ ΠHR, ℎ̂ ∈ ℋ and a
̃𝑥 ∶ ℋ → ℝ as

𝔼ℎ̂,𝜋,𝑡[̃𝑥] ∶= 𝔼 [̃𝑥] = ∑
ℎ∈ℋ(ℎ̂,𝑡)

𝑝h(ℎ, 𝜋) ⋅ ̃𝑥(ℎ).

In the 𝔼 operator above, the random variable ̃𝑥 lives in a probability space (Ω, 𝑝) where Ω = ℋ(ℎ̂, 𝑡) and
𝑝(ℎ) = 𝑝h(ℎ, 𝜋), ∀ℎ ∈ Ω. Moreover, if ℎ̂ is a state, then it is interpreted as a history with the single initial
state.

Definition 2.4.3. The history-dependent expectation is defined for each 𝑡 ∈ ℕ, 𝜋 ∈ ΠHR, ℎ̂ ∈ ℋ, ̃𝑥 ∶ ℋ → ℝ,
̃𝑏 ∶ ℋ → ℬ as

𝔼ℎ̂,𝜋,𝑡[̃𝑥 ∣ ̃𝑏] ∶= 𝔼 [̃𝑥 ∣ ̃𝑏] .

In the 𝔼 operator above, the random variables ̃𝑥 and ̃𝑏 live in a probability space (Ω, 𝑝) where Ω = ℋ(ℎ̂, 𝑡)
and 𝑝(ℎ) = 𝑝h(ℎ, 𝜋), ∀ℎ ∈ Ω. Moreover, if ℎ̂ is a state, then it is interpreted as a history with the single
initial state.

7

Definition 2.4.4. The history-dependent expectation is defined for each 𝑡 ∈ ℕ, 𝜋 ∈ ΠHR, ℎ̂ ∈ ℋ, ̃𝑥 ∶ ℋ → ℝ,
̃𝑦 ∶ ℋ → 𝒱 as

𝔼ℎ̂,𝜋,𝑡[̃𝑥 ∣ ̃𝑦](ℎ) ∶= 𝔼 [̃𝑥 ∣ ̃𝑦 = ̃𝑦(ℎ)] (ℎ), ∀ℎ ∈ ℋ(ℎ̂, 𝑡).
In the 𝔼 operator above, the random variables ̃𝑥 and ℎ̃ live in a probability space (Ω, 𝑝) where Ω = ℋ(ℎ̂, 𝑡)
and 𝑝(ℎ) = 𝑝h(ℎ, 𝜋), ∀ℎ ∈ Ω. Moreover, if ℎ̂ is a state, then it is interpreted as a history with the single
initial state.

2.5 Basic Properties

Theorem 2.5.1. Assume ̃𝑥 ∶ ℋ → ℝ and 𝑐 ∈ ℝ. Then ∀ℎ ∈ ℋ, 𝜋 ∈ ΠHR, 𝑡 ∈ ℕ:

𝔼ℎ̂,𝜋,𝑡 [𝑐 + ̃𝑥] = 𝑐 + 𝔼ℎ̂,𝜋,𝑡 [̃𝑥] .

Proof. Directly from Theorem 1.2.12.

Theorem 2.5.2. Suppose that ̃𝑥, ̃𝑦 ∶ ℋ → ℝ. Then ∀ℎ ∈ ℋ, 𝜋 ∈ ΠHR, 𝑡 ∈ ℕ:

𝔼ℎ̂,𝜋,𝑡 [̃𝑥 + ̃𝑦] = 𝔼ℎ̂,𝜋,𝑡 [̃𝑥] + 𝔼ℎ̂,𝜋,𝑡 [̃𝑦] .

Proof. From Theorem 1.2.7.

Theorem 2.5.3. Suppose that 𝑐 ∈ ℝ. Then ∀ℎ ∈ ℋ, 𝜋 ∈ ΠHR, 𝑡 ∈ ℕ:

𝔼ℎ̂,𝜋,𝑡 [𝑐] = 𝑐.

Proof. From Theorem 1.2.8.

Theorem 2.5.4. Suppose that ̃𝑥, ̃𝑦 ∶ ℋ → ℝ satisfy that ̃𝑥(ℎ) = ̃𝑦(ℎ), ∀ℎ ∈ ℋ. Then ∀ℎ ∈ ℋ, 𝜋 ∈ ΠHR, 𝑡 ∈
ℕ:

𝔼ℎ̂,𝜋,𝑡 [̃𝑥] = 𝑐 + 𝔼ℎ̂,𝜋,𝑡 [̃𝑦] .

Proof. From Theorem 1.2.9.

Theorem 2.5.5. For each ℎ̂ ∈ ℋ, 𝜋 ∈ ΠHR, and 𝑡 ∈ ℕ:

𝔼ℎ̂,𝜋,𝑡 [̃𝑟h] = 𝔼ℎ̂,𝜋,𝑡 ⎡⎢
⎣

| ̃id|−1
∑
𝑘=0

𝑟(̃𝑠𝑘, ̃𝑎𝑘, ̃𝑠𝑘+1)⎤⎥
⎦

,

where ̃id(ℎ) is the identity function, | ⋅ | is the length of a history (0-based), ̃𝑠𝑘 ∶ ℋ → 𝒮 and ̃𝑎𝑘 ∶ ℋ → 𝒜 are
the 0-based 𝑘-th state and action, respectively of each history.

Proof. Follows from Theorem 2.5.1 and the equality of the reward function ̃𝑟h and the sum in the expectation.

Theorem 2.5.6. For each ℎ ∈ ℋ, 𝜋 ∈ ΠHR, and 𝑡 ∈ ℕ:

𝔼ℎ,𝜋,𝑡 [̃𝑟h] = ̃𝑟h(ℎ) + 𝔼ℎ,𝜋,𝑡 [̃𝑟h
≥𝑘0

] ,

where 𝑘0 ∶= |ℎ|.

8

Proof. Follows from Theorem 2.5.4.

Theorem 2.5.7. For each ℎ̂ ∈ ℋ, 𝜋 ∈ ΠHR, 𝑡 ∈ ℕ, ℎ ∈ ℋ:

ℙℎ̂,𝜋.𝑡[̃𝑠𝑘0
= ̃𝑠𝑘0

(𝜔) ∧ ̃𝑎𝑘0
= ̃𝑎𝑘0

(𝜔)] > 0 ⇒ 𝔼ℎ̂,𝜋,𝑡 [̃𝑟h
𝑘0

∣ ̃𝑠𝑘0
, ̃𝑎𝑘0

] (ℎ) = ̃𝑟h
𝑘0

(ℎ), ∀ℎ ∈ ℋ.

where 𝑘0 ∶= |ℎ̂|.

Proof. From Theorem 1.2.8.

Theorem 2.5.8. Assume ℎ ∈ ℋ and 𝑓 ∶ ℋ → ℝ such that 𝑠0 ∶= 𝑠|ℎ|(ℎ)

𝑓(⟨ℎ, 𝑎, 𝑠⟩) = 𝑓(⟨𝑠0, 𝑎, 𝑎⟩), ∀𝑎 ∈ 𝒜, 𝑠 ∈ 𝒮.

Then
𝔼ℎ,𝜋,1 [̃𝑓] = 𝔼𝑠0,𝜋,1 [̃𝑓] .

Proof. Directly from the definition of the expectation.

2.6 Total Expectation

Theorem 2.6.1 (Total Expectation). For each ℎ ∈ ℋ, 𝜋 ∈ ΠHR, 𝑡 ∈ ℕ, ̃𝑥 ∶ ℋ → ℝ and ̃𝑦 ∶ ℋ → 𝒱:

𝔼ℎ,𝜋,𝑡 [𝔼ℎ,𝜋,𝑡 [̃𝑥 ∣ ̃𝑦]] = 𝔼ℎ,𝜋,𝑡 [̃𝑥] .

Proof. From Theorem 1.4.2.

Theorem 2.6.2. Suppose that the random variable ̃𝑥 ∶ ℋ → ℝ satisfies for some 𝑘, 𝑡 ∈ ℕ, with 𝑘 ≤ 𝑡, that

̃𝑥(ℎ) = ̃𝑥(ℎ≤𝑘), ∀ℎ ∈ ℋ,

where ℎ≤𝑘 is the prefix of ℎ of length 𝑘. Then for each ℎ ∈ ℋ, 𝜋 ∈ ΠHR:

𝔼ℎ,𝜋,𝑡 [̃𝑥] = 𝔼ℎ,𝜋,𝑘 [̃𝑥] .

2.7 Conditional Properties

Theorem 2.7.1. For each 𝛽 > 0, ℎ ∈ ℋ, 𝜋 ∈ ΠHR, 𝑡 ∈ ℕ, ̃𝑥 ∶ ℋ → ℝ, 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜:

𝔼ℎ,𝜋,𝑡+1[̃𝑥 ∣ ̃𝑎|ℎ| = 𝑎, ̃𝑠|ℎ|+1 = 𝑠] = 𝔼⟨ℎ,𝑎,𝑠⟩,𝜋,𝑡[̃𝑥],

Proof. Let
𝑏 ∶= ℙℎ,𝜋,𝑡+1 [̃𝑎|ℎ| = 𝑎, ̃𝑠|ℎ|+1 = 𝑠]

= ̂𝑝ℎ,𝜋(ℎ′) ⋅ 𝜋(ℎ′, 𝑎) ⋅ 𝑝(𝑠|ℎ′|(ℎ′), 𝑎, 𝑠)
> 0

where the inequality holds from the hypothesis. Also, let

ℬ ∶= {ℎ′ ∈ Ωℎ,𝑡+1 ∣ 𝑎|ℎ|(ℎ′) = 𝑎 ∧ 𝑠|ℎ|+1(ℎ′) = 𝑠} .

9

Note that
ℬ = Ω⟨ℎ′,𝑎,𝑠⟩,𝑡, (3)

which can be seen by algebraic manipulation from (1).

Using the notation above, we can show the result as

𝔼ℎ,𝜋,𝑡+1[̃𝑥 ∣ ̃𝑎|ℎ| = 𝑎, ̃𝑠|ℎ|+1 = 𝑠] = 1
𝑏 ∑

ℎ′∈ℬ
̂𝑝ℎ,𝜋(ℎ′) ⋅ 𝑥(ℎ′) [definition]

= 1
𝑏 ∑

ℎ′∈Ω⟨ℎ′,𝑎,𝑠⟩,𝑡

̂𝑝ℎ,𝜋(ℎ′) ⋅ 𝑥(ℎ′) [Eq. (3)]

= ∑
ℎ′∈Ω⟨ℎ′,𝑎,𝑠⟩,𝑡

̂𝑝⟨ℎ,𝑎,𝑠⟩,𝜋(ℎ′) ⋅ 𝑥(ℎ′) [Eq. (2)]

= 𝔼⟨ℎ,𝑎,𝑠⟩,𝜋,𝑡[̃𝑥]. [definition]

3 Dynamic Program: History-Dependent Finite Horizon

In this section, we derive dynamic programming equations for histories. We assume an MDP 𝑀 = (𝒮, 𝒜, 𝑝, 𝑟)
throughout this section.

The main idea of the proof is to:

1. Derive (exponential-size) dynamic programming equations for the history-dependent value function of
history-dependent policies

(a) Define the value function
(b) Define an optimal value function

2. Show that value functions decompose to equivalence classes

3. Show that the value function for the equivalence classes can be computed efficiently

3.1 Definitions

Definition 3.1.1. A finite horizon objective definition is given by 𝑂 ∶= (𝑠0, 𝑇) where 𝑠0 ∈ 𝒮 is the initial
state and 𝑇 ∈ ℕ is the horizon.

In the reminder of the section, we assume an objective 𝑂 = (𝑠0, 𝑇).
Definition 3.1.2. The finite horizon objective function for and objective 𝑂 is 𝜋 ∈ ΠHR is defined as

𝜌(𝜋, 𝑂) ∶= 𝔼𝑠0,𝜋,𝑇 [̃𝑟h] .

Definition 3.1.3. A policy 𝜋⋆ ∈ ΠHR is return optimal for an objective 𝑂 if

𝜌(𝜋⋆, 𝑂) ≥ 𝜌(𝜋, 𝑂), ∀𝜋 ∈ ΠHR.

10

Definition 3.1.4. The set of history-dependent value functions 𝒰 is defined as

𝒰 ∶= ℝℋ.

Definition 3.1.5. A history-dependent policy value function 𝑢̂𝜋
𝑡 ∶ ℋ → ℝ for each ℎ ∈ ℋ, 𝜋 ∈ ΠHR, and

𝑡 ∈ ℕ is defined as
𝑢̂𝜋

𝑡 (ℎ) ∶= 𝔼ℎ,𝜋,𝑡 [̃𝑟h
≥|ℎ|] ,

Definition 3.1.6. The optimal history-dependent value function 𝑢̂⋆
𝑡 ∶ ℋ → ℝ is defined for a horizon 𝑡 ∈ ℕ

as
𝑢̂⋆

𝑡(ℎ) ∶= sup
𝜋∈ΠHR

𝑢̂𝜋
𝑡 (ℎ).

The following definition is another way of defining an optimal policy.

Definition 3.1.7. For each 𝑡 ∈ ℕ, a policy 𝜋⋆ ∈ ΠHR is optimal if

𝑢̂𝜋⋆
𝑡 (ℎ) ≥ 𝑢̂𝜋

𝑡 (ℎ), ∀𝜋 ∈ ΠHR, ℎ ∈ ℋ.

Theorem 3.1.8. A policy 𝜋⋆ ∈ ΠHR optimal in Definition 3.1.7 is also optimal in Definition 3.1.7 for any
initial state 𝑠0 and horizon 𝑇 .

3.2 History-dependent Dynamic Program

The following definitions of history-dependent value functions use a dynamic program formulation.

Definition 3.2.1. The history-dependent policy Bellman operator 𝐿𝜋
h ∶ 𝒰 → 𝒰 is defined for each 𝜋 ∈ ΠHR

as
(𝐿𝜋

h𝑢̃)(ℎ) ∶= 𝔼ℎ,𝜋,1 [̃𝑟h
|ℎ| + 𝑢̃] , ∀ℎ ∈ ℋ, 𝑢̃ ∈ 𝒰,

where the value function 𝑢̃ is interpreted as a random variable on defined on the sample space Ω = ℋ.

Definition 3.2.2. The history-dependent optimal Bellman operator 𝐿⋆
h ∶ 𝒰 → 𝒰 is defined as

(𝐿⋆
h𝑢̃)(ℎ) ∶= max

𝑎∈𝒜
𝔼ℎ,𝑎,1 [̃𝑟h

|ℎ| + 𝑢̃] , ∀ℎ ∈ ℋ, 𝑢̃ ∈ 𝒰,

where the value function 𝑢̃ is interpreted as a random variable on defined on the sample space Ω = ℋ.

Definition 3.2.3. The history-dependent DP value function 𝑢𝜋
𝑡 ∈ 𝒰 for a policy 𝜋 ∈ ΠHR and 𝑡 ∈ ℕ is

defined as

𝑢𝜋
𝑡 ∶= {0 if 𝑡 = 0,

𝐿𝜋
h𝑢𝜋

𝑡−1 otherwise.

Definition 3.2.4. The history-dependent DP value function 𝑢⋆
𝑡 ∈ 𝒰 for 𝑡 ∈ ℕ is defined as

𝑢⋆
𝑡 ∶= {0 if 𝑡 = 0,

𝐿⋆
h𝑢⋆

𝑡−1 otherwise.

Lemma 3.2.5. Suppose that 𝑢1, 𝑢2 ∈ 𝒰 satisfy that 𝑢1(ℎ) ≥ 𝑢2(ℎ), ∀ℎ ∈ ℋ. Then

(𝐿⋆
h𝑢1)(ℎ) ≥ (𝐿𝜋

h𝑢2)(ℎ), ∀𝜋 ∈ ΠHR, ℎ ∈ ℋ.

Proof. From Theorem 1.2.11.

11

The following theorem shows the history-dependent value function can be computed by the dynamic program.
The following theorem is akin to [?, theorem 4.2.1].

Theorem 3.2.6. For each 𝜋 ∈ ΠHR and 𝑡 ∈ ℕ:

𝑢̂𝜋
𝑡 (ℎ) = 𝑢𝜋

𝑡 (ℎ), ∀ℎ ∈ ℋ.

Proof. By induction on 𝑡. The base case for 𝑡 = 0 follows from the definition. The inductive case for 𝑡 + 1
follows for each ℎ ∈ ℋ when |ℎ| = 𝑘0 as

𝑢̂𝜋
𝑡+1(ℎ) = 𝔼ℎ,𝜋,𝑡+1 [̃𝑟h

≥𝑘0
] [Definition 3.1.5]

= 𝔼ℎ,𝜋,𝑡+1 [𝔼ℎ,𝜋,𝑡+1 [̃𝑟h
≥𝑘0

∣ ̃𝑎𝑘0
, ̃𝑠𝑘0+1]] [Theorem 2.6.1]

= 𝔼ℎ,𝜋,𝑡+1 [̃𝑟h
𝑘0

+ 𝔼ℎ,𝜋,𝑡+1 [̃𝑟h
≥𝑘0+1 ∣ ̃𝑎𝑘0

, ̃𝑠𝑘0+1]] [Theorem 2.5.7]

= 𝔼ℎ,𝜋,𝑡+1 [̃𝑟h
𝑘0

+ 𝔼⟨ℎ,𝑎̃𝑘0 , ̃𝑠𝑘0+1⟩,𝜋,𝑡 [̃𝑟h
≥𝑘0+1]] [Theorem 2.7.1]

= 𝔼ℎ,𝜋,𝑡+1 [̃𝑟h
𝑘0

+ 𝑢̂𝑡(⟨ℎ, ̃𝑎𝑘0
, ̃𝑠𝑘0+1⟩; 𝜋)] [Definition 3.1.5]

= 𝔼ℎ,𝜋,𝑡+1 [̃𝑟h
𝑘0

+ 𝑢𝜋
𝑡 (⟨ℎ, ̃𝑎𝑘0

, ̃𝑠𝑘0+1⟩)] [inductive assm]
= 𝔼ℎ,𝜋,1 [̃𝑟h + 𝑢̃𝜋

𝑡] [Theorem 2.6.2]
= 𝐿𝜋

h𝑢𝜋
𝑡 [Definition 3.2.1]

= 𝑢𝜋
𝑡 (ℎ). [Definition 3.2.3]

Also, we use 𝑢̃𝜋
𝑡 to emphasize when we treat 𝑢𝜋

𝑡 as a random variable.

The following theorem is akin to [?, theorem 4.3.2].

Theorem 3.2.7. For each 𝑡 ∈ ℕ:

𝑢⋆
𝑡(ℎ) ≥ 𝑢̂𝑡(ℎ; 𝜋), ∀ℎ ∈ ℋ, 𝜋 ∈ ΠHR.

Proof. By induction on 𝑡. The base case is immediate. The inductive case follows for 𝑡 + 1 as follows. For
each 𝜋 ∈ ΠHR:

𝑢⋆
𝑡+1(ℎ) = (𝐿⋆

h𝑢⋆
𝑡)(ℎ) [Definition 3.2.2]

≥ (𝐿𝜋
h𝑢̂𝑡(⋅; 𝜋))(ℎ) [ind asm, Lemma 3.2.5]

= (𝐿𝜋
h𝑢𝜋

𝑡)(ℎ) [Theorem 3.2.6]
= 𝑢𝜋

𝑡 (ℎ) [Definition 3.1.5]
= 𝑢̂𝑡(ℎ; 𝜋). [Theorem 3.2.6]

4 Expected Dynamic Program: Markov Policy

4.1 Optimality

We discuss results needed to prove the optimality of Markov policies.

12

Definition 4.1.1. The set of independent value functions is defined as 𝒱 ∶= ℝ𝒮.

Definition 4.1.2. A Markov Bellman operator 𝐿⋆ ∶ 𝒱 → 𝒱 is defined as

(𝐿⋆𝑣)(ℎ) ∶= max
𝑎∈𝒜

𝔼ℎ,𝑎,1 [̃𝑟h + 𝑣(̃𝑠|ℎ|)] , ∀𝑢̃ ∈ 𝒰,

Definition 4.1.3. The optimal value function 𝑣⋆
𝑡 ∈ 𝒱, 𝑡 ∈ ℕ is defined as

𝑣⋆
𝑡 ∶= {0 if 𝑡 = 0

(𝐿⋆𝑣⋆
𝑡−1) otherwise.

Theorem 4.1.4. Suppose that 𝑡 ∈ ℕ. Then:

𝑣⋆
𝑡 (𝑠|ℎ|(ℎ)) = 𝑢⋆

𝑡(ℎ), ∀ℎ ∈ ℋ.

Proof. By induction on 𝑡. The base case follows immediately from the definition. The inductive step for
𝑡 + 1 follows as:

𝑢⋆
𝑡+1(ℎ) = max

𝑎∈𝒜
𝔼ℎ,𝑎,1 [̃𝑟h

|ℎ| + 𝑢̃⋆
𝑡] [Definition 3.2.4]

= max
𝑎∈𝒜

𝔼ℎ,𝑎,1 [̃𝑟h
|ℎ| + 𝑣⋆

𝑡 (̃𝑠𝑙)] [inductive asm.]

= max
𝑎∈𝒜

𝔼𝑠0,𝑎,1 [̃𝑟h
|ℎ| + 𝑣⋆

𝑡 (̃𝑠𝑙)] [Theorem 2.5.8]

= max
𝑎∈𝒜

𝔼𝑠0,𝑎,1 [̃𝑟h + 𝑣⋆
𝑡 (̃𝑠𝑙)] [Theorem 2.5.1]

= 𝑣⋆
𝑡+1(𝑠|ℎ|(ℎ)) [Definition 4.1.3].

Definition 4.1.5. The optimal finite-horizon policy 𝜋⋆
𝑡 , 𝑡 ∈ ℕ is defined as

𝜋⋆
𝑡 (𝑘, 𝑠) ∶= {arg max𝑎∈𝒜 𝔼𝑠,𝑎,1 [̃𝑟h + 𝑣⋆

𝑡−𝑘(̃𝑠|ℎ|)] if 𝑘 ≤ 𝑡,
𝑎0 otherwise,

where 𝑎0 is an arbitrary action.

Theorem 4.1.6. Assume a horizon 𝑇 ∈ ℕ. Then:

𝑣⋆
𝑇 −|ℎ|(𝑠|ℎ|(ℎ)) = 𝑢𝜋⋆

𝑇−ℎ
𝑇 −|ℎ|(ℎ), ∀ℎ ∈ {ℎ ∈ ℋ ∣ |ℎ| ≤ 𝑇 } .

Proof. Fix some 𝑇 ∈ ℕ. By induction on 𝑘 from 𝑘 = 𝑇 to 𝑘 = 0. The base case is immediate from the
definition. We prove the inductive case for 𝑘 − 1 from 𝑘 as

𝑢𝜋⋆
𝑇

𝑇 −𝑘+1(ℎ) = 𝔼ℎ,𝜋⋆
𝑇 ,1 [̃𝑟h

𝑘 + 𝑢̃𝜋⋆
𝑇

𝑇 −𝑘] [Definition 3.2.1]

= 𝔼ℎ,𝑎⋆,1 [̃𝑟h
𝑘 + 𝑢̃𝜋⋆

𝑇
𝑇 −𝑘] [???]

= 𝔼ℎ,𝑎⋆,1 [̃𝑟h
𝑘 + 𝑣⋆

𝑇 −𝑘(̃𝑠1)] [ind asm]
= 𝔼𝑠0,𝑎⋆,1 [̃𝑟h + 𝑣⋆

𝑇 −𝑘(̃𝑠1)] [Theorem 2.5.8]
= max

𝑎∈𝒜
𝔼𝑠0,𝑎,1 [̃𝑟h + 𝑣⋆

𝑇 −𝑘(̃𝑠1)] [???]

= 𝑣⋆
𝑇 −𝑘+1(𝑠0). [Definition 4.1.3]

Here, 𝑘 ∶= |ℎ|, 𝑎⋆ ∶= 𝜋⋆
𝑇 (𝑘, 𝑠0), and 𝑠0 ∶= 𝑠|ℎ|(ℎ)

13

4.2 Evaluation

We discuss results pertinent to the evaluation of Markov policies.

Markov value functions depend on the length of the history.

Definition 4.2.1. The set of independent value functions is defined as 𝒱M ∶= ℝℕ×𝒮.

Definition 4.2.2. A Markov policy Bellman operator 𝐿𝜋
𝑘 ∶ 𝒱 → 𝒱 for 𝜋 ∈ Π is defined as

(𝐿𝜋𝑣)(𝑘, 𝑠) ∶= max
𝑎∈𝒜

𝔼𝑠,𝑎,1 [̃𝑟h + 𝑣(𝑘 + 1, ̃𝑠|ℎ|)] , ∀𝑣 ∈ 𝒱M, 𝑘 ∈ ℕ, 𝑠 ∈ 𝒮.

Definition 4.2.3. The Markov policy value function 𝑣𝜋
𝑡 ∈ 𝒱M, 𝑡 ∈ ℕ for 𝜋 ∈ ΠMD is defined as

𝑣𝜋
𝑡 ∶= {0 if 𝑡 = 0,

(𝐿𝜋𝑣𝜋
𝑡−1) otherwise.

14

	Probability Spaces and Expectation
	Definitions
	Basic Properties
	The Laws of The Unconscious Statisticians
	Total Expectation and Probability

	Formal Decision Framework
	Markov Decision Process
	Histories
	Policies
	Distribution
	Basic Properties
	Total Expectation
	Conditional Properties

	Dynamic Program: History-Dependent Finite Horizon
	Definitions
	History-dependent Dynamic Program

	Expected Dynamic Program: Markov Policy
	Optimality
	Evaluation

