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1 Probability Spaces and Expectation

In this section, we define the basic probability concepts on finite sets.

1.1 Definitions

Remark 1.1.1. This document omits basic intuitive definitions, such as the comparison or arithmetic opera-
tions on random variables. Arithmetic operations on random variables are performed element-wise for each
element of the sample set. Please see the Lean file for complete details.

Definition 1.1.2. A finite probability measure p: @ — R, on a finite set §2 is any function that satisfies

Zp(w) =1.

weN
Definition 1.1.3. The set of finite probability measures A(Q) for a finite Q is defined as
A(Q) = {p= Q=R D plw) = 1} :
weN

Definition 1.1.4. A finite probability space is P = (2, p), where  is a finite set referred to as the sample
set, p € A(Q), and the o-algebra is 2.

Definition 1.1.5. A random variable defined on a finite probability space P is a mapping Z: Q — R.

For the remainder of Section 1, we assume that P = (Q,p) is a finite probability space. All random variables
are defined on the space P unless specified otherwise.

Definition 1.1.6. A boolean set is B = {false, true}.

Definition 1.1.7. The expectation of a random variable Z: Q — R is

E[F] =) pw) Fw).

Definition 1.1.8. An indicator function I: B — {0,1} is defined for b € B as

1 ifb=
(b) = 1 b = true,
0 if b = false.



Definition 1.1.9. The probability of b: Q — B is defined as
P [b] :=E[1(d)] .
Definition 1.1.10. The conditional expectation of Z: Q — R conditioned on b: Q — B is defined as
1

E[#]b] = H,B][E[gz.uo?)],

where we define that /0 = 0 for each x € R.
Definition 1.1.11. The conditional probability of b: Q — Boné: Q— Bis defined as
Polée] ==ED)|e.

Remark 1.1.12. It is common to prohibit conditioning on a zero probability event both for expectation
and probabilities. In this document, we follow the Lean convention, where the division by 0 is 0; see
div_zero. However, even some basic probability and expectation results may require that we assume that
the conditioned event does not have probability zero for it to hold.

Definition 1.1.13. The random conditional expectation of a random variable Z: ) — R conditioned on
7: Q@ — Y for a finite set Y is the random variable E[Z | ] : © — R is defined as

E[F | §] () = E[#|§ = jw)], Ywe

Remark 1.1.14. The Lean file defines expectations more broadly for a data type p which is more general
than just R. The main reason to generalize to both R and R,. However, in principle, the definitions could
be used to reason with expectations that go beyond real numbers and may include other algebras, such as
vectors or matrices.

1.2 Basic Properties

Lemma 1.2.1. Suppose that b,é: Q — B. Then:
1(bAE) =1(0)-1(e),

where the equality applies for all w € Q.
Theorem 1.2.2. Suppose that ¢: Q — B such that P [¢] = 0. Then for any T: Q — R:

E[z]|¢]=0.
Proof. Immediate from the definition and the fact that 0-z =0 for x € R. O
Theorem 1.2.3. Suppose that ¢: Q — B such that P [¢] = 0. Then for any b: Q= R:

P[o]é] =o0.
Proof. Immediate from Theorem 1.2.2. O

Theorem 1.2.4. Suppose that b,é: Q — B, then

Plondl=P[blé Ple.



Proof. The property holds immediately when P [¢] = 0. Assume that P [¢] > 0. Then:

Plonc =E[1BAE) [Definition 1.1.9]
=E[1(b) - 1(e)] [Lemma 1.2.1]
:L[E[u@)-n@] P[] 1
Pl
=E[I(b) | ] -P[d] [Definition 1.1.10]
=P[b]é P [Definition 1.1.11].
O
Lemma 1.2.5. Let ij: Q — Y with a finite Y. Then
Plj = y(w)] > p(w), wel.
Proof.
Plyg =y(w)] = E:Qp(w) AW =g(w)) [Definition 1.1.9]
w'e
> p(w) we Qand pw') >0,V € Q.
O
Remark 1.2.6. Theorem 1.2.12 shows the equivalence of expectations for surely equal random variables.
Theorem 1.2.7. Random variables Z,7: Q — R satisfy that
Ez+g=E[z]+E[g].
Proof. From the distributive property of sums. O
Theorem 1.2.8. A random variable T: Q@ — R and ¢ € R satisfies that
Elc] =ec.
Theorem 1.2.9. Suppose that T: Q — R and ¢ € R. Then
Elc+ 2] =c+E[T].

Proof. From Theorems 1.2.7 and 1.2.8. O

Theorem 1.2.10. Suppose that T,5: Q2 — R and Z: Q@ — V are random variables and ¢ € R, such that
J(w) = c+ Z(w). Then
E[j]2(w) = c+E[F| 5 (@), Ywe.
Proof. From Theorem 1.2.9. O
Theorem 1.2.11. Suppose that Z,7: Q — R satisfy that
Yw e Q,p(w) >0 = T(w) > g(w).

Then
E[Z] > Ey].



Theorem 1.2.12 (Congruence of Expectation). Suppose that Z,%: Q@ — R satisfy that
Vwe Q,p(w) >0 = Z(w) = Z(w).

Then
E[z]=E[Z].

Proof. Immediately from the congruence of sums. O

1.3 The Laws of The Unconscious Statisticians

Theorem 1.3.1. Let 7: Q — R be a random variable. Then:

E[Z] = Z Pz =2z .

2€E()

Proof. Let X := Z(2), which is a finite set. Then:

E[z] = Zp(w) - Z(w) [Definition 1.1.7]
weN
=3 b)) - = F(w)) 77
weQ el
=33 pw) zlw = Fw)) [27]
weQ xel

=SS pw) Uz = F(w) 27

zeX weN

= Z z-Efl(z = F(w))] [Definition 1.1.7]
zeX

=Y a-Pla=Fw). [Definition 1.1.9]
el

The following theorem generalizes the theorem above.

Theorem 1.3.2. Let %: Q — R and b: Q — Y be random variables. Then:

E[Z|b]= Y Pli=z|0]

2€Z(Q)

Theorem 1.3.3. Let : Q — R and §: Q — Y be random variables with Y finite. Then:

1.4 Total Expectation and Probability

Theorem 1.4.1 (Law of Total Probability). Letb: Q — B and 7: Q — Y be random variables with a finite

set'Y. Then: 3 3
Y PbAG=y)| =P

yey



Theorem 1.4.2 (Law of Total Expectation). Let Z: Q@ — X and §: Q — Y be random variables with a finite
set'Y. Then:
E[E[z | §]] = E[7].

Proof. Recall that we are allowing the division by 0 and assume that z/0 = 0.

E[E[F|§] =) pw) - E[F | (w) [Definition 1.1.7]
we
= pw)-E[F]§=fw) [Definition 1.1.13]
we
= __pl) W) -Z(w) - 1(g(w') = glw efinition
‘Z;Fw:mm};“ ) #(W) - 1(Hw) =§(w)  [Definition 1.1.10]
) z(w) - p(w) J(w') = g(w rearrange
= 30 3 3 G e =5 feamangd
N E (W) - p(w) J(w') = g(w equals when |gj(w’) = §(w
—MZG:QP(OJ) Z(w') %P[g:g<w,>]“(y( )=§(w))  [equals when [j(w') = §(w)
= p(w') - Z(w') [see below]
w' eN
=E[7].

Above, we used the fact that

) 3 291G = §(w)) = (),

S Pli=0(w)]

which follows by analyzing two cases. First, when p(w’) = 0, then the equality holds immediately. If
p(w’) > 0 then by Lemma 1.2.5, P [§ = §(w’)] > 0, we get from Definition 1.1.9 that

> e R D) = ) = g )

which completes the step. O

2 Formal Decision Framework

2.1 Markov Decision Process

Definition 2.1.1. A Markov decision process M := (8, A, P,r) consists of a finite nonempty set of states §, a
finite nonempty set of actions A, transition function P: § x A — A(S), and a reward function r: Sx Ax S —
R.

2.2 Histories

We implicitly assume in the remainder of the section an MDP M = (8, A4, p,r).



Definition 2.2.1. A history h in a set of histories H is a sequence of states and actions defined for M
recursively as
hi=(s), lor] h:=('sa),

where s € 8§, a € A,and b’ € K.
Definition 2.2.2. The length |h| € N of a history h € J is defined as

()] -
(R, s, a)] :

0,
1+ K], h e

Definition 2.2.3. The set H g of non-empty histories is
Hygi={h € H ||h| >1}.
Definition 2.2.4. Following histories H (h,t) C H for h € J of length ¢t € N are defined recursively as
H(h,t) = {i?g’,a,s) |he H(W,t—1),a € A,s €S} i)ftltrlez_rxx(l);se.
Definition 2.2.5. The set of histories J(, of length t € N is defined recursively as

g {(s) | s €8} if t =0,
i {(h,a,8) |he H, 1,a€ A,s €S} textotherwise.

Theorem 2.2.6. For h € J(:
|h'| = |h| +t, Vh' € H(h,t).
Proof. The theorem follows by induction on ¢ from the definition. O
Definition 2.2.7. We use §;,: 5 — § to denote the 0-based k-th state of each history.
Definition 2.2.8. We use a;,: H — A to denote the 0-based k-th action of each history.

Definition 2.2.9. The history-reward random variable #': % — R for h = (h/,a,s) € H for b’ € H,
a € A, and s € § is defined recursively as

(k) = (s (h'), a,5) + 1y (B).

Definition 2.2.10. The history-reward random variable 72: % — R for h = (h',a,s) € H for k' € I,
a € A,and s € § is defined as the k-th reward (0-based) of a history.

Definition 2.2.11. The history-reward random variable 72, : # — R for h = (h',a,s) € H for ' € H,
a € A,and s € § is defined as the sum of all k-th or earlier rewards (0-based) of a history.

Definition 2.2.12. The history-reward random variable 7, : H — R for h = (h',a,s) € H for K € H,
a € A,and s € § is defined as the sum of k-th or later reward (0-based) of a history.

2.3 Policies

Definition 2.3.1. The set of decision rules D is defined as D := A°. A single action a € A can also be
interpreted as a decision rule d := s — a.

Definition 2.3.2. The set of history-dependent policies is g = A(A)7C.



Definition 2.3.3. The set of Markov deterministic policies Iy is Iy := DY. A Markov deterministic
policy m € Il can also be interpreted as m € IlyR:

(k) := & [w(|hl, s ()],
where 4 is the Dirac distribution, and sy, is the history’s last state.

Definition 2.3.4. The set of stationary deterministic policies Ilgp, is defined as Ilgp := 2. A stationary
policy 7 € Ilg can be interpreted as m € Ilyy:

(h) := & [w(sy(h))] ,

where 4 is the Dirac distribution and s, is the history’s last state.

2.4 Distribution

Definition 2.4.1. The history probability distribution ph: Hyg — A(F (h,t)) and 7 € Tlyg is defined for
each T € N and h € H (h,t) as

I(h = h) if T =0,

B(m))(h) ==
ez (m)(R) {pgIW,w).W<hf,a>~p<sh<h'>7a,s> T >1Ah=(},a,5)

Moreover, the function p" maps policies to correct probability distribution.

TODO: This definition needs to be updated. A probability space (£, ;, 2Qh’f,f)hﬁ) which is defined as

Yy o= W € H i | s(h) = s, (W) Aay(h) = ay (), ¥k < |hl}, (1)

1 if (h',a,s)=h,
Phx(B) - m(h',a) - p(sy(h'),a,s) otherwise,

i)hm (<h/7 a, 8)) = { (2)
for each (1, a, s) € ), ;. The random variables are defined as 5,(h") := s, (h'), a,(h') := a,(h'), Yh' € Q) ;.
We interpret the subscripts analogously on all operators, including other risk measures, and E, and P.

Definition 2.4.2. The history-dependent expectation is defined for each ¢t € N, m € Ilyg, h € 7 and a

T:H =R as R
i) = E[F] = Y ph(h,m) - E(h).
hed((h,t)

In the E operator above, the random variable Z lives in a probability space (2, p) where Q = H (?L, t) and
p(h) = pP(h,7),¥Yh € Q. Moreover, if h is a state, then it is interpreted as a history with the single initial
state.

Definition 2.4.3. The history-dependent expectation is defined for each ¢t € N, m € Ilyg, he H,2: H — R,
b: H — B as . B B
ERmlE | D) = [F ]3] .

In the E operator above, the random variables Z and b live in a probability space (€2, p) where Q = H (;L, t)
and p(h) = p"(h,7),Yh € Q. Moreover, if h is a state, then it is interpreted as a history with the single
initial state.



Definition 2.4.4. The history-dependent expectation is defined for each t € N, m € Ilyg, he H,z: H — R,
y:H —V as i
Btz | g(h) = E[Z | § = §(h)] (h), Yhe F(h,t).

In the E operator above, the random variables # and h live in a probability space (€, p) where Q = H (?l, t)
and p(h) = p"(h,7),Yh € Q. Moreover, if h is a state, then it is interpreted as a history with the single
initial state.

2.5 Basic Properties

Theorem 2.5.1. Assume T: H — R and ¢ € R. Then Yh € H, 7 € g, t € N:
ER™t e+ 5] = ¢ + EPE[F].
Proof. Directly from Theorem 1.2.12. O
Theorem 2.5.2. Suppose that Z,3§: H — R. Then Vh € H, 7 € g, t € N:
[Efm,w,t [5 + g] _ [Efm,w,t [«%] + [Eimr,t [g] )
Proof. From Theorem 1.2.7. O
Theorem 2.5.3. Suppose that c € R. Then Vh € J,m € Ilyg,t € N:

[E?mr,t [c] —c.

Proof. From Theorem 1.2.8. O
Theorem 2.5.4. Suppose that Z,3: H — R satisfy that Z(h) = §(h),Yh € H. Then Vh € H 7 € g, t €
N:

[homt [55] = ¢ 4 Ehomt [ﬂ] )
Proof. From Theorem 1.2.9. O

Theorem 2.5.5. For each h € H, mellyg, and t € N:
A A lid|—1
[Ehm)t [;h] = [Ehﬂnt Z T(gkv akﬂ §k+1> ’
k=0

where 1d(h) is the identity function, |-| is the length of a history (0-based), Sp: H — S anday: H — A are
the 0-based k-th state and action, respectively of each history.

Proof. Follows from Theorem 2.5.1 and the equality of the reward function ¥ and the sum in the expectation.
O

Theorem 2.5.6. For each h € 7, m € llgy, and t € N:
h,m,t [#h] _ ~h h,m,t |~h
E [f] = (h) +E [rzko] )

where kg := |h|.



Proof. Follows from Theorem 2.5.4.
Theorem 2.5.7. For each h € H,mellyg, teN, he H:

PRy, = 5, (W) Ay, =Ty, ()] >0 = EPTU[RL | Sy, | (B) =T (R), VhE H

where ky == |h|.

Proof. From Theorem 1.2.8.
Theorem 2.5.8. Assume h € H and f: H — R such that sy := s, (h)

f({h,a,s)) = f({sg,a,a)),Yae€ A s€ES.

Then
[Eh,ﬂ',l [f] — [Eso,Tr,l [ﬂ .

Proof. Directly from the definition of the expectation.

2.6 Total Expectation

Theorem 2.6.1 (Total Expectation). For each he H, m € llyg, te N, : H - R and §: H — V:

[Eh.jr,t [IEh,ﬂ",t [f ‘ gH — IEh,ﬂ",t [5] .

Proof. From Theorem 1.4.2.

O

Theorem 2.6.2. Suppose that the random variable T: H — R satisfies for some k,t € N, with k <t, that

Z(h) = &(hgy,),Vh € I,
where hy, is the prefiz of h of length k. Then for each h € H,m € Tlyg:

[Eh,ﬂ',t [f] — [Eh,fr,k [‘,Z.] .

2.7 Conditional Properties

Theorem 2.7.1. For each f >0, he H, m€llyg, t N, Z: H - R, s€ S, a € A:

ﬂ':h’ﬂ—’t+1[§§ | a’\h| = a, g\h|+1 = S] = [E<h,a,s>77r,t[{%];

Proof. Let
.— phmt+l |~ 3 —
b:=P it [aw —Cl,S‘h‘+1 —S]

= D) - 7(h' @) - p(sppr (1), @, 8)
>0

where the inequality holds from the hypothesis. Also, let

B = {h/ € Qi | ap(B') =a A sy (h) = 8}



Note that
B == Q(hﬂaﬂS),t’ (3)

which can be seen by algebraic manipulation from (1).

Using the notation above, we can show the result as

1
BN E | Gy = a, Sy = 8] =5 Y Baa(h) - a() [definition]
h’eB
1 ~ 7 ’
=3 > Baalh) ) [Eq. (3)
h'eQy, s
<h ,a,s),t
= Z ﬁ(h,a7s>77r<h/) : Z‘(h/) [Eq (2)]
heQ,,
(h',a,s),t
= Elhashmi[z], [definition]

3 Dynamic Program: History-Dependent Finite Horizon

In this section, we derive dynamic programming equations for histories. We assume an MDP M = (8, A, p,r)
throughout this section.

The main idea of the proof is to:
1. Derive (exponential-size) dynamic programming equations for the history-dependent value function of
history-dependent policies

(a) Define the value function

(b) Define an optimal value function
2. Show that value functions decompose to equivalence classes

3. Show that the value function for the equivalence classes can be computed efficiently

3.1 Definitions

Definition 3.1.1. A finite horizon objective definition is given by O := (sy,T) where s, € § is the initial
state and 7" € N is the horizon.

In the reminder of the section, we assume an objective O = (sy,T).

Definition 3.1.2. The finite horizon objective function for and objective O is m € Ilyy is defined as
p(m,0) := o™ T [7h]
Definition 3.1.3. A policy 7* € Iy is return optimal for an objective O if

p(ﬂ'*7 O) > p<7Ta 0)7 V€ HHR‘

10



Definition 3.1.4. The set of history-dependent value functions U is defined as
U :=R".

Definition 3.1.5. A history-dependent policy value function uf: 5 — R for each h € J, m € Ilyy, and
t € N is defined as
ay(h) = Pt [F;‘\h\] )

Definition 3.1.6. The optimal history-dependent value function @} : H — R is defined for a horizon t € N

as
ai(h) == sup aF(h).

mellygr

The following definition is another way of defining an optimal policy.
Definition 3.1.7. For each ¢t € N, a policy 7* € IlyR is optimal if
af (h) > ar(h), Vmellyg,heXH.

Theorem 3.1.8. A policy 7* € llyg optimal in Definition 3.1.7 is also optimal in Definition 3.1.7 for any
initial state sy and horizon T'.

3.2 History-dependent Dynamic Program

The following definitions of history-dependent value functions use a dynamic program formulation.

Definition 3.2.1. The history-dependent policy Bellman operator L] : U — U is defined for each 7 € Iy

as
(LE@)(h) == EPmL b + 4], Vhe I ael,

where the value function @ is interpreted as a random variable on defined on the sample space Q0 = .

Definition 3.2.2. The history-dependent optimal Bellman operator Li: U — U is defined as

(L}i) (h) = max E"! 7, +@], VheH icl,

where the value function % is interpreted as a random variable on defined on the sample space Q = .

Definition 3.2.3. The history-dependent DP wvalue function u] € U for a policy m € Ilyg and ¢t € N is
defined as

. 0 ift=0,
Uy = - .
Liuf ; otherwise.
Definition 3.2.4. The history-dependent DP wvalue function u} € U for t € N is defined as
. 0 ift=0,
Uy = - .
Liu; | otherwise.
Lemma 3.2.5. Suppose that u',u? € U satisfy that u*(h) > u?(h),Yh € H. Then

(Lyut)(h) > (LFu?®)(h), VYmelyg,heH.
Proof. From Theorem 1.2.11. O

11



The following theorem shows the history-dependent value function can be computed by the dynamic program.
The following theorem is akin to [?, theorem 4.2.1].

Theorem 3.2.6. For each m € llyg and t € N:

ar(h) = ur(h), VheX.

Proof. By induction on ¢t. The base case for t = 0 follows from the definition. The inductive case for ¢ + 1
follows for each h € K when |h| =k, as

Definition 3.1.5]

[Nhk |a Ak » 5k0+1H Theorem 2.6.1

~

~h h,m,t+1
T, TE [7">k 1 | gy 5k0+1”

[

[E"

[ Theorem 2.5
— Fhomt+l [;1}30 + EtPoling Srgea) it [~h H

[

[,

[
[ ]
[ 7]
T [Theorem 2.7.1]
G ﬁt(<h,&k0, Spyr1)i )] [Definition 3.1.5]
[inductive assm]
[
[
[

= £l b 7] Theorem 2.6.2]

= LTuf Definition 3.2.1]
=uf(h). Definition 3.2.3]
Also, we use 4] to emphasize when we treat u as a random variable. O

The following theorem is akin to [?, theorem 4.3.2].

Theorem 3.2.7. For each t € N:

uy(h) > a,(h;m), VheH,mellyg.

Proof. By induction on ¢. The base case is immediate. The inductive case follows for ¢ + 1 as follows. For
each 7 € IlyR:

[Definition 3.2.2]
; [ind asm, Lemma 3.2.5]
LTuT)(h) [Theorem 3.2.6]
[Definition 3.1.5]
[Theorem 3.2.6]

4 Expected Dynamic Program: Markov Policy

4.1 Optimality

We discuss results needed to prove the optimality of Markov policies.

12



Definition 4.1.1. The set of independent value functions is defined as V := RS.

Definition 4.1.2. A Markov Bellman operator L*: V — V is defined as

(L*0)(h) = max Eret [/ 4 o(3,)|, Viel,

Definition 4.1.3. The optimal value function v; € V,t € N is defined as

. 0 ift=0
vf =
¢ (L*v}_y) otherwise.
Theorem 4.1.4. Suppose that t € N. Then:

v; (s (h)) = ui(h), VheIH.

Proof. By induction on ¢. The base case follows immediately from the definition. The inductive step for
t + 1 follows as:

ujyy (h) = max EMe! (7, + @] [Definition 3.2.4]
= max Ehal [?‘};L‘ + v§(§l)] [inductive asm.]
= max Eso-a:1 [F‘};l‘ + Ut(Sl)] [Theorem 2.5.8]
= max Eso@L [Fh 4 v (5))] [Theorem 2.5.1]
= vy1 (8 (R)) [Definition 4.1.3].

Definition 4.1.5. The optimal finite-horizon policy w;,t € N is defined as

£k, 5) = argmax,. 4 E5%! [T‘h + vy k(sw)] if k <t,
(N ag otherwise,

where a, is an arbitrary action.
Theorem 4.1.6. Assume a horizon T' € N. Then:
V(81 (R) = ur "Zl(h), Vhelhe H ||h <T}.

Proof. Fix some T € N. By induction on k from k = T to k = 0. The base case is immediate from the
definition. We prove the inductive case for k£ — 1 from k as

u;*:ik-o-l(h) — Fhomid [;h g k] Definition 3.2.1]

[

— [fhatl [;h +UT k] [727]
= Ehat L[ 4 UT k(51)] [ind asm]
= [Esoa’ 1 [ ( Bl [Theorem 2.5.8]
_ ESosa,1 Nh 3 Vel

151632( 0 [T‘ + v k(sl)] [777]
= Vp_py1(80)- [Definition 4.1.3]

Here, k := |h|, a* := 7y (k, 3¢), and sq := s, (h) =

13



4.2 FEvaluation

We discuss results pertinent to the evaluation of Markov policies.
Markov value functions depend on the length of the history.
Definition 4.2.1. The set of independent value functions is defined as Vy; := RN*S,

Definition 4.2.2. A Markov policy Bellman operator L :V — V for m € Il is defined as

(L70)(k, 5) = maxE>*! [ +o(k+1,5,)], YveVykeNseS.

Definition 4.2.3. The Markov policy value function v € Vy,t € N for m € Il is defined as

. 0 ift=0,
[—
! (L™} ;) otherwise.

14
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